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Abstract. We give a necessary and sufficient condition for a mixed quantum mechanical state to
be separable. The criterion is formulated as a boundedness condition in terms of the greatest cross
norm on the tensor product of trace class operators.

1. Introduction

The question of separability of density operators on finite-dimensional Hilbert spaces has
recently been studied extensively in the context of quantum information theory, see, e.g., [1–6]
and references therein. In this work we provide a simple mathematical characterization of
separable density operators.

Throughout this paper the set of trace class operators on some Hilbert space H is denoted
by T (H) and the set of bounded operators on H is denoted by B(H). A density operator is a
positive trace class operator with trace one.

Definition 1. Let H1 and H2 be two Hilbert spaces of arbitrary dimension. A density operator
� on the tensor product H1 ⊗ H2 is called separable if there exist a family {ωi} of positive real
numbers, a family {ρ(1)

i } of density operators on H1 and a family {ρ(2)
i } of density operators

on H2 such that

� =
∑

i

ωiρ
(1)
i ⊗ ρ

(2)
i (1)

where the sum converges in trace class norm.

Consider the spaces T (H1) and T (H2) of trace class operators on H1 and H2, respectively.
Both spaces are Banach spaces when equipped with the trace class norm ‖ · ‖(1)

1 or ‖ · ‖(2)
1

respectively, see, e.g., Schatten [7]. In the following we shall drop the superscript and write
‖ · ‖1 for both norms, slightly abusing the notation; it will always be clear from the context
which norm is meant. The algebraic tensor product T (H1) ⊗alg T (H2) of T (H1) and T (H2)

is defined as the set of all finite linear combinations of elementary tensors u ⊗ v, i.e. the set of
all finite sums

∑n
i=1 ui ⊗ vi where ui ∈ T (H1) and vi ∈ T (H2) for all i.

It is well known that we can define a cross norm on T (H1) ⊗alg T (H2) by [8]

‖t‖γ := inf

{ n∑
i=1

‖ui‖1‖vi‖1

∣∣∣∣t =
n∑

i=1

ui ⊗ vi

}
(2)

where t ∈ T (H1) ⊗alg T (H2) and where the infimum runs over all finite decompositions of
t into elementary tensors. It is well known that ‖ · ‖γ majorizes any subcross seminorm on
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T (H1)⊗algT (H2) and that the completion T (H1)⊗γ T (H2) of T (H1)⊗algT (H2) with respect
to ‖ · ‖γ is a Banach algebra [8].

In the following we specialize to the situation where both H1 and H2 are finite dimensional,
hence T (H1) = B(H1) and T (H2) = B(H2). It is well known that the completion
of B(H1) ⊗alg B(H2) with respect to the spatial norm on B(H1) ⊗alg B(H2) is equal to
B(H1 ⊗ H2), see, e.g., [9, example (11.1.6)]. (The spatial norm on B(H1) ⊗alg B(H2) is
the norm induced by the operator norm on B(H1 ⊗H2).) As H1 and H2 are finite dimensional,
both T (H1) = B(H1) and T (H2) = B(H2) are nuclear. By nuclearity it follows that the
completion of B(H1) ⊗alg B(H2) with respect to ‖ · ‖γ , denoted by B(H1) ⊗γ B(H2), equals
B(H1 ⊗ H2). Moreover in finite dimensions all Banach space norms on B(H1 ⊗ H2), in
particular the operator norm ‖·‖, the trace class norm ‖·‖1, and the norm ‖·‖γ , are equivalent,
i.e. generate the same topology on B(H1 ⊗ H2).

2. The separability criterion

Lemma 2. Let H1 and H2 be Hilbert spaces, and � be a density operator on H1 ⊗ H2. Then
‖�‖γ � 1 if and only if ‖�‖γ = 1.

Proof. This follows from 1 = ‖�‖1 � ‖�‖γ . �

Proposition 3. Let H1 and H2 be finite-dimensional Hilbert spaces and let � be a separable
density operator on H1 ⊗ H2, then ‖�‖γ � 1.

Proof. Let � be a separable density operator on H1 ⊗ H2, then there exist a family {ωi} of
positive real numbers, a family {ρ(1)

i } of density operators on H1 and a family {ρ(2)
i } of density

operators on H2 such that

� =
∑

i

ωiρ
(1)
i ⊗ ρ

(2)
i

where the sum converges in trace class norm. If this sum is finite, then obviously ‖�‖γ � 1.
If the sum is infinite, consider the sequence {�n} of trace class operators where �n ≡∑n

i=1 ωiρ
(1)
i ⊗ ρ

(2)
i . The sequence {�n} converges to � in trace class norm and is a Cauchy

sequence with respect to ‖ · ‖γ . Thus {�n} converges to � with respect to the norm ‖ · ‖γ and
we have ‖�n‖γ � 1 for all n. As ‖�‖γ � ‖� − �n‖γ + ‖�n‖γ for all n, also ‖�‖γ � 1. �

All density operators � satisfy

1 = Tr(�) = ‖�‖1 � ‖�‖γ

with equality if � is separable. Thus one might tentatively consider the difference ‖�‖γ −‖�‖1

as a measure of nonseparability.

Proposition 4. Let H1 and H2 be finite-dimensional Hilbert spaces and let � be a density
operator on H1 ⊗ H2 with ‖�‖γ � 1, then � is separable.

Proof. Let � be a density operator on H1 ⊗ H2 with ‖�‖γ � 1. We divide the proof of
separability into two steps. Firstly we show that for every δ > 0 there exist families {xi(δ)}
and {yi(δ)} of trace class operators on H1 and H2 respectively such that � = ∑

i xi(δ)⊗yi(δ),
where the sum converges with respect to the trace class norm, and such that∑

i

‖xi(δ)‖1‖yi(δ)‖1 � ‖�‖1 + δ = 1 + δ.
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As � ∈ B(H1) ⊗γ B(H2), there exist elements �n(δ) ∈ B(H1) ⊗alg B(H2), where n ∈ N, such
that

‖� − �n(δ)‖γ <
1

2n+3
δ.

Consequently, ‖�n+1(δ)−�n(δ)‖γ < 1
2n+2 δ for all n. Therefore, �n+1(δ)−�n(δ) can be written

in the form

�n+1(δ) − �n(δ) =
mn+1∑

kn+1=1

x
(n+1)
kn+1

(δ) ⊗ y
(n+1)
kn+1

(δ)

with x
(n+1)
kn+1

(δ) ∈ B(H1), y
(n+1)
kn+1

(δ) ∈ B(H2) and
mn+1∑

kn+1=1

‖x(n+1)
kn+1

(δ)‖1‖y(n+1)
kn+1

(δ)‖1 � 1

2n+2
δ.

Since

‖�0(δ)‖γ � ‖�‖γ + ‖�0(δ) − �‖γ < ‖�‖γ + 1
2δ

�0(δ) can be represented as

�0(δ) =
m0∑

k0=1

x
(0)
k0

(δ) ⊗ y
(0)
k0

(δ)

with x
(0)
k0

(δ) ∈ B(H1), y
(0)
k0

(δ) ∈ B(H2) and
m0∑

k0=1

‖x(0)
k0

(δ)‖1‖y(0)
k0

(δ)‖1 � ‖�‖γ + 1
2δ.

Consequently,

� = �0(δ) +
∑
n∈N

(�n+1(δ) − �n(δ)) (3)

=
∑
n∈N

mn∑
kn=1

x
(n)
kn

(δ) ⊗ y
(n)
kn

(δ). (4)

Thus we arrive at

1 = ‖�‖1 �
∑
n∈N

mn∑
kn=1

‖x(n)
kn

(δ)‖1‖y(n)
kn

(δ)‖1 � ‖�‖γ + δ � 1 + δ (5)

which concludes the first part of our proof of proposition 4. By virtue of (5) the sequence
{x(n)

kn
( 1

N
) ⊗ y

(n)
kn

( 1
N

)}N∈N\0 is bounded with respect to the trace class norm for every n, kn.

Therefore, by possibly passing to a subsequence, we can assume that {x(n)
kn

( 1
N

) ⊗ y
(n)
kn

( 1
N

)}N
converges in trace class norm to a trace class operator x

(n)
kn

⊗ y
(n)
kn

for N → ∞. From (5) we
infer that ∥∥∥∥

∑
n

∑
kn

x
(n)
kn

⊗ y
(n)
kn

∥∥∥∥
1

�
∑

n

∑
kn

‖x(n)
kn

‖1‖y(n)
kn

‖1 = 1

and thus
∑

n

∑
kn

x
(n)
kn

⊗ y
(n)
kn

is convergent.
If we let δ ∈ ]0, 1], then ‖�n+1(δ)−�n(δ)‖γ < 1

2n+2 δ � 1
2n+2 and ‖�0(δ)‖γ < ‖�‖γ + 1

2δ �
‖�‖γ + 1

2 . Thus we find that

sup
δ

‖�0(δ)‖γ +
∑

n

sup
δ

‖�n+1(δ) − �n(δ)‖γ < ∞.



3954 O Rudolph

Thus we conclude (Weierstraß convergence criterion) that the series (3) converges uniformly on
]0, 1] and therefore we can interchange the infinite sums in (3) and (4) with the limit N → ∞,
arriving at

� = lim
N→∞

∑
n

∑
kn

x
(n)
kn

(1/N) ⊗ y
(n)
kn

(1/N)

=
∑

n

∑
kn

lim
N→∞

(x
(n)
kn

(1/N) ⊗ y
(n)
kn

(1/N))

=
∑

n

∑
kn

x
(n)
kn

⊗ y
(n)
kn

.

Moreover, by (5),

1 = | Tr(�)| =
∣∣∣∣
∑

n

∑
kn

Tr(x(n)
kn

(δ)) Tr(y(n)
kn

(δ))

∣∣∣∣
�

∑
n

∑
kn

| Tr(x(n)
kn

(δ)) Tr(y(n)
kn

(δ))|

�
∑

n

∑
kn

‖x(n)
kn

(δ)‖1‖y(n)
kn

(δ)‖1

�
∑

n

∑
kn

‖x(n)
kn

‖1‖y(n)
kn

‖1 + δ

= 1 + δ

we see that | Tr(x(n)
kn

(δ)) × Tr(y(n)
kn

(δ))| converges to ‖x(n)
kn

‖1‖y(n)
kn

‖1 for all kn, n. Thus

‖x(n)
kn

‖1‖y(n)
kn

‖1 = | Tr(x(n)
kn

)|| Tr(y(n)
kn

)| and therefore ‖x(n)
kn

‖1 = | Tr(x(n)
kn

)| and ‖y(n)
kn

‖1 =
| Tr(y(n)

kn
)|. This implies that we can choose all x

(n)
kn

and y
(n)
kn

as positive trace class operators.
This proves that � is separable. �

Putting all our results together we arrive at the main theorem of this paper.

Theorem 5. Let H1 and H2 be finite-dimensional Hilbert spaces and � be a density operator
on H1 ⊗ H2. Then � is separable if and only if ‖�‖γ = 1.

3. Conclusion

To conclude we have been able to prove a new mathematical separability criterion for density
operators: a density operator � on a finite-dimensional tensor product Hilbert space is separable
if and only if ‖�‖γ = 1. Our results also imply that the difference ‖�‖γ − ‖�‖1 = ‖�‖γ − 1
may be considered as a quantitative measure of entanglement. In general it will be difficult
to compute ‖�‖γ exactly, and accordingly theorem 5 is unlikely to provide a practical tool to
decide whether a given density operator is separable or not without explicitly constructing a
representation of the form (1). However, theorem 5 provides some principal insight into the
structure of the space of density operators and therefore is of some interest in its own right.
We have restricted ourselves to density operators on a tensor product Hilbert space of two
finite-dimensional Hilbert spaces. It is straightforward, however, to generalize our results to
the situation of density operators defined on a tensor product of more than two, but at most
finitely many, finite-dimensional Hilbert spaces.
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